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Decoding Musical Valence and Arousal: Exploring
the Neural Correlates of Music-Evoked Emotions
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Abstract—Music conveys both basic emotions, like joy and
sadness, and complex ones, such as tenderness and nostalgia.
Its effects on emotion regulation and reward have attracted
much research attention, as the neural correlates of music-evoked
emotions may inform neurorehabilitation interventions. Here, we
used fMRI to decode and examine the neural correlates of per-
ceived valence and arousal in music excerpts. Twenty participants
were scanned while listening to 96 music excerpts, classified
beforehand into four categories varying in valence and arousal.
Music modulated activity in cortical regions, most noticeably
in music-specific subregions of the auditory cortex, thalamus,
and regions of the reward network such as the amygdala. Using
multivoxel pattern analysis, we created a computational model to
decode the perceived valence and arousal of the music excerpts
with above-chance accuracy. We further explored associations
between musical features and brain activity in valence-, arousal-
, reward-, and auditory-related networks. The results emphasize
the involvement of distinct musical features, notably expressive
features such as vibrato and tonal and spectral dissonance in
valence, arousal, and reward brain networks. Using ecologically
valid music stimuli, we contribute to delineating the neural
correlates of music-evoked emotions with potential implications
in the development of novel music-based neurorehabilitation
strategies.

Index Terms—Music, fMRI, Valence, Arousal, Decoding, Emo-
tion

I. INTRODUCTION

Music can elicit a wide range of affective responses in
the listener, from broader positive or arousing feelings to
more specific emotions such as joy, sadness, or nostalgia. The
precise mechanisms through which music induces emotions,
the characteristics of these emotions, and their connection to
other affective processes are the focus of much research [1].
Understanding the relationship between musical expressivity
and affective responses is essential to developing effective and
personalized strategies for emotion regulation [2], [3].
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Functional neuroimaging studies have explored the neural
bases of music-evoked emotions. Music engages emotion-
related brain structures, such as the amygdala, nucleus accum-
bens (NAcc), hypothalamus, hippocampus, insula, cingulate
cortex, and orbitofrontal cortex (OFC) [4]. A meta-analysis
[5] showed that music-evoked emotions with positive valence
engage the reward network, including the ventral and dorsal
striatum (head of the caudate nucleus), amygdala, anterior cin-
gulate cortex (ACC), OFC, insula, mediodorsal thalamus, and
secondary somatosensory cortex. Importantly, the recognition
of emotions in music may start as early as in the auditory
cortex, as [6] postulated, by extending the functional profile
of the auditory cortex and hypothesizing an emotion-specific
functional hub with connections with a broad range of limbic,
paralimbic, and neocortical structures.

Listening to music involves tracking and predicting sound
events over time, actions that consistently engage the reward
system. Both the perceptual prediction error (predictions about
the music itself, i.e., the next chord) and the reward prediction
error (how emotionally rewarding a piece of music is) play a
role in the pleasure potential of music [7]-[10].

Music exploits our expectations through manipulations in
melody, rthythm, and their patterns [11]. The relation between
specific musical features and the recognized emotions has
been studied as a correspondence model based on acoustic
features (such as melody, rhythm, harmony, dynamics, or
timbre) and formal semantic annotations [12], [13]. To develop
technological music-based therapeutic applications (e.g., using
brain-computer interfaces [14], [15]), we need to identify the
neural correlates of music-evoked emotions and understand
how music can convey meaning to the listener [16], [17].

Different theoretical approaches to emotion and music-
evoked emotion have been proposed [18], with relevance to
emotion generation and regulation [19]. For example, valence
and arousal are the fundamental features of the circumplex
model of affect [20]. They can be defined as consciously
accessible representations of more basic neurophysiological
processes, reflecting core descriptive features of all affective
experiences [21].

The present study addresses the neural correlates of per-
ceived affective states in music excerpts, as measured by func-
tional magnetic resonance imaging (fMRI). Using multivariate
pattern analysis (MVPA), we aim to identify the brain regions
that encode musical valence and arousal and explore their
relations with music characteristics.
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Previous fMRI studies were able to successfully decode
music-based emotions and explored different elements of the
stimuli, such as the duration of music excerpts, decoding
accuracy, and the spatial distribution of discriminant voxels.
Encoding models based on the temporal and frequency di-
mensions of musical stimuli (musical features encompassing
rhythmic, timbral, and tonal properties) revealed a spatial and
temporal structure of the underlying neural representations,
and decoding performance accuracies were as high as 95%
[22]. Clusters in the ACC, insula, and somatosensory cortex
were key in the decoding of emotions in music stimuli,
particularly joy and fear [23]. Decoding models were also used
to identify genres of songs (described by the features *'melody
schema’ (absolute pitch, relative pitch), and ’acoustic chro-
magram’ (absolute pitch)) considering voxel pattern responses
[24].

Here, we aim to identify the brain networks that respond to
valence and arousal in music and to understand how acous-
tic features of the stimuli impact brain activity. Ultimately,
we aim to establish the connection between music features,
music-derived affective states, and brain activity patterns using
MVPA. We hypothesize that the neural networks involved
in affective processes [25], which include emotion-dependent
frontal regions, supplementary motor areas, and subcortical
regions such as the amygdala, hippocampus, and striatum,
in coordination with the auditory cortex, contribute to the
mapping of music features and evoked emotions.

Most previous studies have focused on restricted music
stimuli - few genres, music excerpts, or linked to specific
emotions such as joy and fear - typically using mass-univariate
approaches. Here, we implement a novel approach by employ-
ing a diverse set of naturalistic stimuli, thus enhancing the
generalizability and robustness of previous findings. We focus
on broader affective dimensions by using a two-dimensional
system defined in Russell’s circumplex model, attempting
to establish a combined understanding of both arousal and
valence in relation to music perception. By incorporating a
wide range of music pieces, each characterized by distinct
acoustic features, we are able to identify the neural correlates
of these variations. This approach adds to the understanding of
how musical features influence brain activity, delving into the
complex relationship between music, core affect, and neural
processes.

II. METHODS & MATERIALS
A. Participants

Twenty individuals (11 females; mean age 31.3 + 6.5
years, from 21 to 41 years) participated in the experiment.
All participants gave written informed consent. The study was
conducted following the declaration of Helsinki and approved
by the Comissdo de Etica e Deontologia da Investigacio da
Faculdade de Psicologia e Ciéncias de Educa¢do da Universi-
dade de Coimbra. Exclusion criteria included the diagnosis of
neurological disorders, mood disorders, or hearing loss.

Participants completed the Profile of Mood States (POMS)
questionnaire [26], which includes 42 words describing sen-
sations that people feel in everyday life. They were asked

to select an answer, on a scale from O (Not at all) to 4
(Very much), based on what best corresponds to the way
they have been feeling during the last seven days, including
the present day. Mood state was analyzed according to six
subscales - Tension (Mdn = 7.5, range: 2-19), Depression
(Mdn = 1.5, range: 0-15), Hostility (Mdn = 2.0, range: 2-15),
Vigor (Mdn = 13.5, range: 5-22), Fatigue (Mdn = 5.5, range:
0-15), and Confusion (Mdn = 5.0, range: 1-17). A Total Mood
Disturbance score revealed a Mdn = 109.5 with a range from
88 to 162.

Our sample reported a mean of 2.2 + 3.5 years of formal
music training and scored 18.1 + 4.6 on average in the Mini-
PROMS (Profile of Music Perception Skills) test [27], [28].

B. Music dataset and acoustic analysis

The stimuli were selected from a public dataset - 4Q audio
emotion dataset [13] - of 900 30-second audio clips, divided
into four categories or quadrants: Q1 (positive valence and
high arousal); Q2 (negative valence and high arousal); Q3
(negative valence and low arousal); and Q4 (positive valence
and low arousal). The dataset was built using a semi-automatic
selection and classification method. Excerpts that were unclear
in terms of the perceived valence/arousal were excluded,
ending with 225 music excerpts per category. This dataset
also includes 1702 features for each clip, both acoustic (such
as tempo change and loudness) and musical (such as the
number of musical layers, tremolo notes, or vibrato rates).
The authors used available audio toolboxes to generate features
and created novel, emotionally-relevant audio features based
on previous studies. Using statistical classifiers, the authors
could discriminate valence and arousal based on these features
and extract relevant information regarding music emotion
recognition, namely the weight of specific features and musical
concepts to each emotion quadrant.

C. Procedure

Before being scanned, participants filled out an MRI safety
questionnaire and the POMS questionnaire. The fMRI session
lasted approximately 75 minutes and was divided into four
runs. Participants were asked to perform the listening task
with their eyes closed. They listened to 96 musical excerpts
randomly selected for each participant from the dataset and
balanced across the four quadrants. The excerpts were reduced
in duration by selecting the first 11.5 seconds of the original
stimulus. Within each run, participants listened to 24 excerpts,
6 of each quadrant, grouped into two sets of 3 stimuli, each
lasting 36 seconds (11.5 seconds per excerpt and 0.5 seconds
intervals in between). Between music blocks, participants
listened to 12 seconds of ambient sound (inherent to the MRI
scanner), 12 seconds of white noise, and again 12 seconds
of ambient sound (Figure 1). The run structure was based
on the pseudo-randomized presentation of music from the
four quadrants interleaved with blocks of ambient sound (no
auditory stimulus) and of white noise. This randomization
ensures that the second presentation of a music block from
a quadrant occurs only after the first presentation of all
quadrants. The total duration of each run was 10 minutes.
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Fig. 1. Diagram of the structure of each trial in the fMRI paradigm. The
trials with music from each quadrant were presented twice for each of the
four quadrants, always with different excerpts.
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Fig. 2. Arousal-valence plane shown to the participants during the rating
experiment. Q1 (positive valence, high arousal), Q2 (negative valence, high
arousal), Q3 (negative valence, low arousal), and Q4 (positive valence, low
arousal).

After the scanning session, participants listened to the music
excerpts again and rated their perceived valence and arousal
(the presentation of the music excerpts was randomized per
run). The instructions were as follows: “While listening to the
music, we ask you to evaluate what it conveys to you. As soon
as you think you can classify the musical excerpt in terms of
valence and activation, please click with the mouse on the
corresponding point in the space, minding that the relative
position to the center should also be considered”. The answer
was registered as a mouse click in the 2D arousal-valence
plane (Figure 2). A 1-second interval followed each click, with
the next music excerpt being then presented. The task was
performed with noise-canceling headphones in a quiet room.

D. Data acquisition

The MRI session and the rating experiment were carried
out using Psychopy version 2022.2.5 [29]. POMS responses
were provided by adapting the 42-item paper questionnaire to
a digital form.

MRI acquisition was performed on a 3T Siemens Magne-
tom Prisma fit scanner with a 20-channel head coil at the
Institute of Nuclear Sciences Applied to Health, Coimbra.
Auditory stimuli were presented using MRI-compatible head-
phones (Optoacoustics Optoactive II). The scanning session
started with the acquisition of two anatomical images: one 3D
anatomical magnetization-prepared rapid acquisition gradient
echo pulse sequence (repetition time (TR) = 2530 ms, echo

time (TE) = 3.5 ms, flip angle (FA) = 7°, 192 slices, voxel size
1.0 x 1.0 x 1.0 mm, field of view (FOV) = 256 x 256 mm)
and one T2 space sequence (TR = 3200 ms, TE = 408 ms, 192
slices, voxel size 1.0 x 1.0 x 1.0 mm, FOV = 250 x 250 mm).
A total of four functional runs were acquired using a 2D multi-
band (MB) gradient-echo echo-planar imaging sequence (TR =
1000 ms, TE = 37 ms, flip angle = 68°, 600 volumes, 66 slices,
voxel size 2.0 x 2.0 x 2.0 mm, FOV = 220 mm, MB factor
= 6). For correcting image distortions related to magnetic
field inhomogeneities, we acquired pairs of spin-echo images
with anterior-posterior and posterior-anterior phase encoding
polarity with matching geometry and echo-spacing to each of
the functional scans (TR = 10250 ms, TE = 73.6 ms). These
were acquired before the functional runs. The neuroimaging
data were organized according to the BIDS specification [30],
using BIDSKit [31] and dem?2niix [32] tools for conversion.

E. Data analysis

We estimated the distribution of valence and arousal ratings
provided by the participants for the music excerpts previously
heard during the fMRI session. The mouse click position was
normalized between -1 and 1 using the furthest report of
each participant. We report the match between participants’
evaluations and the intended category of the excerpt according
to the dataset (Panda, Malheiro, and Paiva 2020).

Imaging data were preprocessed using fMRIPrep 20.2.7
[33], [34], which is based on Nipype 1.7.0 [35], [36]. In brief,
this pipeline includes slice time correction, head motion cor-
rection, unwarping, and normalization to the MNI space. For
a step-by-step description of the methods, see supplementary
materials. The following sections describe the imaging data
analyses performed in Python with Nilearn v0.10.2 [37].

1) GLM analysis: The first level analysis was based on
a single General Linear Model (GLM) estimated for each
participant. The design matrices included predictors for the
music of each quadrant according to the participant’s labeling
and confound predictors for head motion (six motion param-
eters + first-order derivatives + powers, a total of 24). Before
generating the maps, we applied temporal high pass filtering
with a cut-off frequency of 0.007 Hz, spatial smoothing with
a Gaussian kernel of full-width at half maximum = 4 mm, and
considered a second-order autoregressive model AR(2) as the
temporal variance model.

The second level analysis consisted of generating the group
activation map for the contrast between all the quadrants and
white noise, corrected for multiple comparisons at the voxel
level using False Discovery Rate (FDR) (¢ = 0.005). We
extracted the clusters from this map considering a minimum
cluster size of 25 voxels. Based on these clusters, we extracted
its z-values for the contrast between each quadrant and noise
for each participant. We only considered the voxels inside each
cluster mask that were significant at the subject level for the
contrast between all quadrants and noise (FDR ¢ = 0.05,
k > 10). We compared the z-values between each pair of
quadrants for all clusters using a two-sided Mann-Whitney-
Wilcoxon test with FDR correction (¢ = 0.05). All clusters
were labeled according to two atlases - AAL3 and Neurosynth
- and manually confirmed by a neuroradiologist.
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2) Multivoxel decoding analysis: For each participant, a
single GLM was re-performed on the preprocessed functional
image, in which each trial of each condition of interest was
separated into its own condition within the design matrix. As
our conditions of interest are the music excerpts, we defined
a predictor for each music excerpt labeled according to its
perceived category, i.e., as identified by the participant in the
rating procedure [38].

The model resulted in 96 beta maps (24 music excerpts
per run, four runs). The individual beta maps were masked
using a gray-matter (GM) mask obtained from the fMRIPrep
preprocessing of the anatomical images, normalized to zero
mean, and scaled to unit variance. Then, a within-subject
analysis was performed on these beta maps.

Multivariate pattern analysis was carried out using a su-
pervised learning method as the estimator model - a Support
Vector Machine (SVM) with a linear kernel and an L1
regularization factor. To solve the multiclass problem, we
implemented a one vs. all method.

We implemented cross-validation to split the data into differ-
ent sets. We could then fit the estimator on the training data set
and measure an unbiased error on the testing set. To avoid any
temporal leakage between training and testing samples (bias
due to temporal proximity of samples, particularly relevant in
functional data), we implemented a leave-one-run-out (LORO)
strategy, where the classifier was trained on 3 of the runs and
tested on the remaining one. Leaving out blocks of correlated
observations, rather than individual observations, is crucial for
non-biased estimates [39].

When performing decoding, the prediction performance of
a model can be checked against null distributions or random
predictions. For this, we guess a chance level score using
simple or random strategies while predicting condition y with
X imaging data. In this work, we used dummy predictors
implemented in Nilearn, to estimate a chance level score. In
summary, the DummyClassifier function makes a predic-
tion that ignores the input features by respecting the class
distribution of the training data. This allows us to compare
(two-sample t-test) whether the model is better than chance
while still considering class imbalance.

With linear models often used as decoders in neuroimaging,
model averaging is appealing as it boils down to averaging
weight maps. The weight map spatially represents the model’s
weights by showing the contribution of each voxel in the
image. The weight maps for the SVM model were obtained
for each participant, where we highlighted the top 2% of the
sorted distribution of the weights. We used AAL3 to identify
the brain structures where clusters were identified [40].

3) Acoustic features: Previous research investigated the
neural processing of individual musical features and generated
hypotheses for further studies [41]. In this work, we aimed to
comprehensively explore the neural correlates of the acoustic
features, particularly in terms of their emotional relevance. We
considered the top 100 features defined by [13] as the optimal
set to discriminate valence and arousal.

To define the relevance of each feature in the valence,
arousal, auditory, and reward networks, we first defined brain
masks based on i. large-scale meta-analysis data provided by

Neurosynth [42], using the “uniformity-based test” feature
(the terms used for the masks were valence, arousal, primary
auditory), and ii. cluster 1 from the meta-analysis presented
by [5] as a music-specific reward mask. We intersected these
brain masks with the GM mask. To compute the regression
coefficients between the beta series and the value of the
acoustic features, we used the Decoder Regressor method
implemented in Nilearn with ridge regressor as the estimator.
This method implements a model selection scheme that av-
erages the best models within a cross-validation loop (set as
3 folds). The resulting average model is the one used as a
regressor. To assess the statistical significance of the results,
we performed an exploratory one-sample Wilcoxon test using
the coefficients obtained (uncorrected).

III. RESULTS

In the following paragraphs, we describe (a) the rating
task and compare its results with the original labeling in the
music dataset; (b) the neural correlates of music listening
following a GLM approach, presenting z-values per condition
to characterize valence and arousal in the regions of interest
(ROIs); (c) the machine learning approach used to differentiate
the four quadrants and present the spatial distribution of the
model weights, i.e., the most important voxels for decoding;
and (d) the associations between acoustic features and activity
in valence, arousal, auditory, and reward networks.

A. Valence and arousal ratings

The results of the rating experiment are summarized in
Figure 3. They show some level of mismatch between the
labels attributed by the participants and those provided by the
4Q audio emotion dataset. This is particularly the case for the
low arousal conditions (Q3 and Q4).

Participants’ labels for Q1 (high arousal, positive valence)
show that 74.8% of the ratings match the 4Q audio emotion
dataset. A lower agreement was detected for Q3 (low arousal,
negative valence), where only 39.0% of the ratings matched
the 4Q audio emotion dataset, consistent with participant-
specific interpretations of the emotional content of the ex-
cerpts. Because of these differences, all the following analyses
were based on the participants’ labels.

Figure 4 shows the distribution of participants’ arousal and
valence ratings for each quadrant, with quadrants defined
according to the dataset labeling. The results show that Q3
stimuli tended to be perceived as neutral here, not negative
as expected. For arousal, the pattern was generally consistent
with the prior labeling.

B. Neural correlates of music-evoked emotions

In Figure 5, we show the group activation map for the
contrast between listening to music of all quadrants and noise.
We found clusters in the auditory cortex, thalamus, cerebellum,
and motor cortices, as well as in regions of the reward network
such as the amygdala and putamen. Table I presents the full
list of clusters, and Figure 6 the z-values for each quadrant in
each cluster. We found differences among quadrants in the
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Fig. 3. Confusion matrix comparing the labels originally associated with the
music clips in the database with those attributed by the participants in the
current study. The value in each cell indicates the percentage of participant
ratings over the total number of music excerpts of each quadrant according
to the dataset labels.

auditory cortices, thalamus, cerebellum, and supplementary
motor area (SMA), with high arousal and positive music
(Q1) eliciting more activity in the majority of the clusters.
Additionally, we provide the z-scores contrasting positive and
negative arousal and valence in supplementary Figures S14
and S15, respectively.

C. Predicting perceived valence and arousal from fMRI data

In the following classification analyses, we considered data
from 15 participants. As the classes were defined according to
each participant’s rating, and four participants did not report
ratings for one of the quadrants, their data were not included.

1) Decoding results: The results for the four-class MVPA
are shown in Figure 7. The mean overall accuracy was 69.4%
(Q1 =58.1%, Q2 =75.3%, Q3 = 74.9%, Q4 = 69.3%) and the
difference between the overall accuracy and the accuracy of
the stringent dummy predictor is statistically significant (p <
0.0001).

2) Visualization of weights: To explore the spatial distri-
bution of the voxels that better differentiated quadrants, we
selected the top 2% most discriminant voxels for each one
vs. all models (Q1 vs. others, Q2 vs. others, and so on) and
overlapped them. Figure 8 presents a probability map over the
four maps (cluster threshold with 50 voxels). The results show
that the most important voxels were predominantly located in
the bilateral auditory cortices for all quadrants. The full list of
clusters can be found in Table II.

D. Acoustic features and brain activation

To explore the impact of acoustic features in the valence,
arousal, auditory, and reward networks, we investigated its
regression profile with all acoustic features, by computing the
mean over all voxels of each mask per participant.

In this analysis, we included a set of 100 candidate acoustic
features based on the previous work and nomenclature by [13].

TABLE I
SIGNIFICANT CLUSTERS FOR THE CONTRAST BETWEEN MUSIC FROM ALL
QUADRANTS AND NOISE (FDR CORRECTED, ¢ = 0.005, CLUSTER
CORRECTION K > 25, N = 19). THE LABELS FOR MAJOR CLUSTERS WERE
OBTAINED FROM THE AAL3 ATLAS AND THE NEUROSYNTH ASSOCIATION

TAB.
Cluster ID X Y V4 Peak z value Size (mm3) Labels
1 58 -5 2 7.29 T 1

la 50 -15 4 7.05 34968 b

1b 6 29 8 6.89 oot 47

Ic 4 25 6 6.82 ttory cortex

2 -59 -1l 4 7.01 Temporal supe-

2 49 -17 2 6.95 34376 rior lZ'ulcu% ugu—

2b -45 23 8 6.75 dit X rAt’x

2 S R T 6.43 ory corte

3 16 -25 -5 5.84 952 Thalamus

4 -5 27 -7 5.50 816 Thalamus

5 12 -67 53 5.35

Sa 30 -61 -47 4.89 2376 Cerebellum (VI)

5b 12 17T 47 4.56

6 48 16 22 497 1040 Inferior frontal

6a 60 16 24 3.81 gyrus

7 -13 81 -45 4.65

Ta -15 -69 -53 4.54 2416 Cerebellum

Tb 29 61 -57 4.30 (vermis, VI)

Tc -5 75 51 4.20

8 29 -61 -25 4.57 984 Cerebellum
(VD)

9 2 2 76 4.56 1272 Supplementary
motor area

10 14 -25 82 4.50 2104 Somatosensory
cortex

11 60 -5 46 4.40 1096 Precentral
gyrus (face,
mouth)

12 18 -7 -15 4.40 360 Amygdala

13 24 2 6 4.37 312 Putamen

14 52 30 2 4.32 520 Inferior frontal
gyrus

15 30 -57 25 4.23 408 Cerebellum
(VD)

16 -57 -5 48 4.18 800 Precentral
gyrus (face,
mouth)

17 -17 29 78 3.95 264 Primary motor

cortex

For a complete overview of these analyses, see Supplementary
Materials.

For the exploratory analysis considering the valence masks,
four of the seven acoustic features presenting significant results
were expressivity features. In particular, these features are
based on vibrato, an expressive technique used in vocal and
instrumental music that consists of a regular pitch oscillation.
The main vibrato-related features are the amount of pitch
variation (extent) and the velocity (rate) of this pitch variation.
Similarly, we see a dominance of expressivity features in
the arousal mask. Regarding the auditory mask, 54 features
appeared to be relevant, with most being related to expres-
sivity, texture, and tone color. Considering the reward mask,
we found that loudness - spectral and tonal dissonance, pitch
(terhardt) - chord change likelihood, and three features derived
from vibrato were the top-ranked features.
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Fig. 4. Violin plots displaying the symmetric kernel density estimate and the quartiles of a box plot of the participants’ valence and arousal ratings for each
music category (as categorized in the original dataset). The values displayed are the Euclidean distance from each axis to the position in the plane where the
participants clicked, normalized for the furthest report.
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TABLE I
CLUSTERS IDENTIFIED IN THE MAP OF FIGURE 8, DISPLAYING THE
COORDINATES OF THE PEAK VOXEL, THE NUMBER OF QUADRANTS AT
THAT COORDINATE, THE CLUSTER SIZE, AND THE LABELS FROM THE
AAL3 ATLAS AND NEUROSYNTH ASSOCIATIONS.

X Y Z #Q at peak Size (mm®) Labels

-65 -3 -3 4 31904 Temporal superior sulcus, au-
ditory cortex

56 -41 12 4 29896 Temporal superior sulcus, au-
ditory cortex

-49 67 -9 2 1936 Temporal inferior, visual ven-
tral stream

-47 8 38 2 1760 Precentral gyrus, language

-33 31 56 2 1552 Precentral gyrus, motor

=27 53 -9 2 3032 Lingual gyrus

-13 -37 44 2 3888 Middle cingulate cortex

-11 -55 40 2 6664 Precuneus

-3 44 8 1 1184 Anterior cingulate cortex

24 -45 -19 1 872 Fusiform gyrus

44 32 34 1 1400 Frontal middle gyrus, pre-
frontal cortex, working mem-
ory

44 6 40 1 800 Frontal middle gyrus, pre-
frontal cortex

56 -1 46 1 816 Precentral gyrus, motor

IV. DISCUSSION

Based on a dataset including diverse music genres, we
found that brain activity during music listening predicted
perceived valence and arousal with above-chance accuracy.
This classification was mainly based on bilateral auditory
cortices, with additional contributions from the precuneus,
frontal and precentral gyri, and cingulate cortex.

Furthermore, the GLM analysis showed that music listening
activated sensory and emotion-related areas. The analysis
of z-values per quadrant showed significant differences in
activation of the bilateral auditory cortices, auditory thalamus,
and SMA.

The acoustic features that significantly predicted brain
activity differed across the valence, arousal, auditory, and
reward networks. This analysis highlighted expressive features,
particularly the vibrato-related ones, as network modulators.

These findings contribute to further comprehending how
music relates to emotions, defining music-specific regions
of interest, and identifying musical features that modulate
different brain networks. Ultimately, we pave the way for
developing music-based neurorehabilitative strategies (such
as neurofeedback): the inherent ability of music to induce
and regulate emotions and mood could indicate that it is a
strong candidate for the interface between the participants
and their brain activity. Our previous findings support the
strategic role of task complexity and feedback valence on the
modulation of the network nodes involved in monitoring and
feedback control, key variables in neurofeedback framework
optimization [43].

A. Valence and Arousal ratings

The distinction between the emotion the listener feels and
the one expressed by the music has been the subject of intense
debate in the literature [44]. Schubert defined the former as the
internal locus of emotion and the latter as the external locus
and discussed the relation between them [2]. The wording
used in our rating task emphasized the external locus. The
short duration of the music excerpts (aimed to explore a wide
range of genres and acoustic features) was more suited to
study perceived rather than felt emotions. Nevertheless, [23]
have suggested that feelings could emerge within seconds,
suggesting the possibility of using shorter musical stimuli.

Three main theories for the distinction and interaction of
felt and perceived emotions were proposed: emotion contagion
(both loci are part of the same emotional process, which
explains why we tend to feel the emotion that music is convey-
ing), decoding (the listener’s decoding will not necessarily be
the same and may be susceptible to ’noise’), and dissociation
(which explores the complex combination of emotion matches
and non-matches, based on mixed cues, between and within
loci). Notably, the felt emotions are often rated the same (par-
ticularly in the arousal factor) or lower than the corresponding
emotion expressed by the stimuli [2]. By using a dataset with
preselected emotion labels, we aimed to balance the stimuli
on arousal and valence. Nevertheless, the observed differences
between predefined labels and participants’ categorizations
highlight the need to tailor the task individually. Several
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Fig. 8. The combination of the top 2% most important voxels for each quadrant to classify valence and arousal categories in the whole-brain analysis (the
colorbar represents the number of times that a specific voxel appears in the top 2%).

personal and stimulus elements may contribute to variability,
such as physiological arousal, personality, and age, as well
as musical features. Additionally, the existence of a positive
emotional bias, extensively described in the music literature
and interpreted as a paradox of tragedy (deriving pleasure from
something that is tragic), may also contribute to the shift of the
ratings from negative to positive [45]-[47]. All the analyses
presented in this study considered the labels provided by each
participant at the cost of stimuli imbalance between classes.

Low arousal stimuli presented a significant mismatch with
the labels provided in the dataset. The ambiguity associated
with low arousal has been previously described for music
[48] and for other stimuli such as facial expressions [49].
Their findings suggest that low-arousal facial expressions are
more ambiguous. Moreover, the authors suggest that this is
related to a greater activation of an ambiguity/salience system
subserved by the amygdala, cerebellum, and dorsal pons. Key
variables have been identified as possible confounds in the
Music-Emotion relation, such as the wording and detail or
task context [12], [50].

B. Neural correlates of music-induced valence and arousal

1) GLM and activation per quadrant: The contrast of
music vs. noise revealed clusters in the superior temporal gyrus
(STG), auditory thalamus, hippocampus, inferior frontal gyrus,
SMA, motor and premotor cortices, amygdala, basal ganglia,
inferior frontal gyrus, and the cerebellum.

The STG is known as a site of auditory association (and
multisensory integration) and thus plays a role in music
listening and production [4]. Because the control condition
was noise, at least a component of the activations was not
due to the mere presence of sound. In accordance with
previous findings, the auditory cortex contributes not only to
sensory perception but also to higher-level aspects of auditory
processing. Responses in bilateral auditory cortices varied
as a function of valence, as pieces of music labeled as QI
and Q4 elicited stronger responses than those labeled as Q2
and Q3 (i.e., activity was stronger for positive vs. negative
music). Recent studies have shown that emotional/motivational

processes influence activity in the auditory cortex and that
neurons in the auditory cortex can distinguish between positive
and negative sounds [51]. One of the models proposed for
this emotion-informed process in sensory cortices is based on
evidence that the reward value of music is correlated with
increasing functional connectivity inside the music perception
network [5].

The auditory thalamus (medial geniculate body) is one
of the structures of the auditory pathway and part of the
thalamocortical system that provides the anatomical bases
for tone and rhythm channels [52]. This structure is also
involved in emotional reactions to acoustic stimuli and is part
of a thalamocortical circuit that integrates musical context and
content [53].

Frontal activity was found in the inferior frontal gyrus (pars
triangularis and frontal operculum), particularly in the right
hemisphere. [54] also reported increased activity in the inferior
frontal gyrus when perceiving and feeling emotions during
music listening, highlighting an increase in activity during the
perceived emotion task. This region was also found in other
studies based on MVPA, highlighting its ability to differentiate
emotions (fear, happiness, sadness, tenderness, and liking in
[55]; fear and joy in [23]).

Clusters were also found in the somatosensory and motor
cortices, premotor regions within the precentral and postcentral
gyri, as well as in the SMA. This aligns with previous
studies reporting on the engagement of somatomotor regions
and the SMA in auditory processing, emotion perception,
and the subjective experience of emotions [4], [56]. Notably,
pleasurable music activates motor regions, including the SMA
and cerebellum, more strongly than music that is emotion-
ally less evocative (note that brain activity during pieces
of music labeled as QI presented the highest values) [57].
Music frequently prompts spontaneous rhythmic movements
in listeners. Therefore, the sensorimotor activity observed in
the present study may reflect the interplay between perception
and movement, even without overt physical actions.

The GLM also revealed activity in the amygdala during mu-
sic listening. Moreover, the activation pattern in the amygdala
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did not show significant differences associated with valence
or arousal of the music pieces. Koelsch and colleagues [58]
found that brain activity in the amygdala was higher for joy
compared to fear. Our finding is more consistent with the view
that the amygdala is an emotional processing hub, important
for both negative and positive stimuli [59].

The hippocampus has been previously linked to music-
evoked emotions. Besides the hippocampal-auditory connec-
tions, which are key to long-term auditive memory, evidence
suggests that this region plays a role in emotional function
and in the formation and maintenance of social attachments
[53], [60], [61]. Moreover, its connections to reward structures
further implicate it in the emotional processing of music [62].

The reward system plays a central role in the pleasure
that most people derive from music. Our results suggest the
engagement of this system: the ventral striatum (including
the NAcc) integrates the limbic circuit and receives input
from the cingulum, OFC, and mesial temporal structures.
The dorsal striatum (including the putamen and the caudate
nucleus) receives inputs from motor and prefrontal/associative
areas and projects to the globus pallidus and substantia nigra.
These circuits are highly interlinked and can both lead to
dopamine release. As such, the striatum is one of the biological
substrates of reward and emotion (pathway of dopaminergic
neural responses). Pharmacological manipulation of dopamine
causally demonstrated that dopamine mediates musical reward
experience, in both positive and negative directions [63].

Several clusters were identified in the cerebellum. The cere-
bellum has been reported in most decoding studies and these
results suggest its relation to music perception and execution
[64]. Different parts of the cerebellum and its connectivity with
the cerebral cortex and the basal ganglia have been associated
with emotion identification and pleasure in music-listening
tasks. It has been shown, for example, that the cerebellum
is involved in processing acoustic features such as timbre and
pitch [24], [65].

Altogether, our results reinforce the main structures previ-
ously identified in music perception and emotion identification
studies. The heterogeneity of our music dataset highlights that
this network represents a basis for processing music stimuli,
and the decoding analysis reinforces the role of structures such
as the bilateral auditory cortices, auditory thalamus, SMA, and
cerebellum in decoding valence and arousal.

2) Exploring the most important voxels for decoding: The
spatial distribution of the most relevant voxels for decoding the
different quadrants emphasizes the importance of the auditory
cortex, motor areas, cingulate (anterior, middle) gyrus, and
frontal middle gyrus. The results suggest a significant over-
lap between the main regions identified here and the GLM
analysis.

C. How does music express different emotions? The neural
correlates of acoustic features

Music emotion recognition has attracted attention from both
music information retrieval and cognitive neuroscience, in a
search for a better understanding of the mechanisms associated
with evoked emotions based on music stimuli. Numerous

features of music have been reported to be related to discrete
emotions [41].

Regarding the reward mask, we found that expressivity,
loudness (tonal and spectral dissonance), and pitch were most
associated with the modulation of brain activity. The impact
of dissonance and expressive features have been previously
found to be relevant in the modulation of reward structures
[11], [60], [65].

[66] studied physical voice features and concluded that
the amygdala and auditory cortex decode the affective quality
of a voice by receiving inputs from other brain regions that
process acoustic features, while also directly responding to
specific acoustic features themselves without requiring prior
processing, particularly when these features are critical for
determining the emotional value of the voice.

Many of the significant features translate aspects of the
vibrato. According to an early study, “a good vibrato is a
pulsation of pitch, usually accompanied with synchronous
pulsation of loudness and timbre, of such extent and rate as
to give a pleasing flexibility, tenderness, and richness to the
tone” [67]. In addition to being a characteristic of the singing
voice [68], vibrato is also used in most musical instruments for
expressivity. Some even argue that vibrato emerged because it
mimics the crying voice, and the manipulation of its extent,
rate, or intensity may be linked to/identified as different
emotions [69].

[22] extracted twenty-one acoustic features capturing tim-
bral, rhythmical, and tonal properties and trained a model to
predict brain activity patterns. While achieving 77% accuracy
considering voxels within the Heschl’s gyrus, secondary audi-
tory regions, planum temporale, planum polare, and anterior
and posterior STG, evidenced the relation between the modu-
lation of these areas with musical features such as roughness
- a measure for sensory dissonance, root-mean-square energy
- a loudness feature and sub-band flux frequencies between
200 Hz and 1600 Hz and negative loadings of flatness, i.e.
a description of the smoothness of the frequency distribution.
[70] explored six musical features (labeled by the authors as
fullness, brightness, activity, timbral complexity, pulse clarity,
and key clarity) and their ability to predict brain responses
while listening to music pieces. Areas in the STG, Heschl’s
gyrus, Rolandic operculum, and cerebellum contributed to the
decoding of timbral features, while for the rhythmic features,
the main areas contributing were the bilateral STG, right Hes-
chl’s gyrus, and hippocampus. [24] used a spherical searchlight
regression analysis to predict brain responses to melody and
harmony features. Using searchlight (classification models
considering localized spherical masks), statistically significant
results were achieved in each of the four cerebral lobes, as
well as in the parahippocampal gyrus and the cerebellum.

Our results show that expressive features (particularly the
ones based on vibrato) tend to contribute more to the modula-
tion of valence- and arousal-related brain structures (as defined
by a Neurosynth meta-analysis). The connectivity between va-
lence structures in the brain mask considered and the auditory
cortex (the sensory input) is well-known [53], [71]. Therefore,
our data suggests that musical features are directly or indirectly
linked to the activation patterns of different brain areas linked
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to valence and arousal [72].

D. Limitations

We used a public dataset as stimuli to obtain a diverse
yet balanced dataset in valence and arousal. This attempt
to use valence and arousal ratings from a previous study to
establish a balance between quadrants was not successful, as
the individual ratings of the participants did not fully agree,
which may have reduced the power of our analysis. This
limitation is minimized by the ability of models to adjust
weights and decision hyperplanes per class.

To maximize the heterogeneity and variety of music pieces
in the dataset, we selected a relatively short segment of each
piece. Nevertheless, recent evidence [23] has concluded that
feeling representations emerged within seconds.

The statistical analysis of the acoustic features was not
corrected for multiple comparisons. Considering the number
of features analyzed and the exploratory nature of this section
of our study, we should limit our interpretation to the trends
shown by this analysis. Future confirmatory analyses will
require out-of-sample validation or another dataset.

E. Conclusion

Our results indicate that several brain regions significantly
encode perceived valence and arousal during listening to
naturalistic music. Using a comprehensive dataset, we probed
the neural correlates of valence and arousal in music. We
also explored how several acoustic features modulated activity
in key networks associated with valence, arousal, sensory
processing, and reward.

Although our emphasis was on perceived rather than felt
emotions, the emotion contagion theory highlights the close
link between the two processes. Nevertheless, future studies
targeting felt emotions, or neurorehabilitative approaches tar-
geting emotion and mood regulation, should take the optimiza-
tion of the emotion framework into consideration. Previous
studies indicate that familiar music elicits stronger emotional
reactions and engagement of reward structures [57]. While
this is a topic for future research, here we focused on the
perception, not the feeling, of the arousal and valence of the
music. These studies could also use longer musical segments
and self-selected musical pieces to optimize the induction
of emotional reactions. Moreover, focusing on valence and
arousal alone may not be optimal for exploring felt emotions.
Aesthetic emotions [73], for example, may represent a more
appropriate model. The connectivity patterns involved in mu-
sical emotions should also be addressed in future studies. [8]
provided evidence that an increase in the reward value of music
is correlated with increasing functional connectivity between
the sensory cortex and reward brain structures as the ventral
striatum/nucleus accumbens.

The understanding of the associations between music acous-
tic features and brain activity (e.g. in the reward system) is key
to optimizing therapeutic strategies. Brain-computer interfaces
(BClIs) may take advantage of music stimuli to provide opti-
mal rewarding feedback - neurally informed, immersive, and
engaging music feedback depends on the characterization of

the link between musical features and brain responses. Several
authors have proposed features, such as loudness and tempo,
as regulators of volitional and non-volitional brain activity.
Real-time adjustment of specific music features may represent
an important alternative for emotion regulation of BCIs [74].
Our results suggest that other acoustic features (for example
vibrato) may ultimately represent a better choice to regulate
brain activity linked to valence and reward.
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